Approximate multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming
نویسندگان
چکیده
In this paper, we study multi-parametric sensitivity analysis under perturbations in multiple rows or columns of the constraint matrix in programming problems with the piecewise linear fractional objective function using the concept of maximum volume in the tolerance region. The weak maximum volume region is defined for optimal region which can be solved through a maximization problem.A major difficulty may arise under such perturbations from computing the inverse of the perturbed basis matrix. Using an approximation to the inverse of the perturbed basis matrix, we construct critical region for simultaneous and independent perturbations of the basis matrix in the given problem. Necessary and sufficient conditions are derived to classify perturbation parameters as ‘focal’ and ‘non-focal’. Non-focal parameters can be deleted from the analysis, because of their low sensitivity in practice. Theoretical results are illustrated with the help of a numerical example.
منابع مشابه
Approximate Solution of Sensitivity Matrix of Required Velocity Using Piecewise Linear Gravity Assumption
In this paper, an approximate solution of sensitivity matrix of required velocity with final velocity constraint is derived using a piecewise linear gravity assumption. The total flight time is also fixed for the problem. Simulation results show the accuracy of the method. Increasing the midway points for linearization, increases the accuracy of the solution, which this, in turn, depends on the...
متن کاملA Parametric Approach for Solving Multi-Objective Linear Fractional Programming Phase
In this paper a multi - objective linear fractional programming problem with the fuzzy variables and vector of fuzzy resources is studied and an algorithm based on a parametric approach is proposed. The proposed solving procedure is based on the parametric approach to find the solution, which provides the decision maker with more complete information in line with reality. The simplicity of the ...
متن کاملSENSITIVITY ANALYSIS IN LINEAR-PLUS-LINEAR FRACTIONAL PROGRAMMING PROBLEMS
In this paper, we study the classical sensitivity analysis when the right - hand – side vector, and the coefficients of the objective function are allowed to vary.
متن کاملClose interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کاملFGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کامل